83 research outputs found

    Mapping Crop Cycles in China Using MODIS-EVI Time Series

    Get PDF
    As the Earth’s population continues to grow and demand for food increases, the need for improved and timely information related to the properties and dynamics of global agricultural systems is becoming increasingly important. Global land cover maps derived from satellite data provide indispensable information regarding the geographic distribution and areal extent of global croplands. However, land use information, such as cropping intensity (defined here as the number of cropping cycles per year), is not routinely available over large areas because mapping this information from remote sensing is challenging. In this study, we present a simple but efficient algorithm for automated mapping of cropping intensity based on data from NASA’s (NASA: The National Aeronautics and Space Administration) MODerate Resolution Imaging Spectroradiometer (MODIS). The proposed algorithm first applies an adaptive Savitzky-Golay filter to smooth Enhanced Vegetation Index (EVI) time series derived from MODIS surface reflectance data. It then uses an iterative moving-window methodology to identify cropping cycles from the smoothed EVI time series. Comparison of results from our algorithm with national survey data at both the provincial and prefectural level in China show that the algorithm provides estimates of gross sown area that agree well with inventory data. Accuracy assessment comparing visually interpreted time series with algorithm results for a random sample of agricultural areas in China indicates an overall accuracy of 91.0% for three classes defined based on the number of cycles observed in EVI time series. The algorithm therefore appears to provide a straightforward and efficient method for mapping cropping intensity from MODIS time series data

    Monitoring of deforestation events in the tropics using multidimensional features of Sentinel 1 radar data

    Get PDF
    Many countries and regions are currently developing new forest strategies to better address the challenges facing forest ecosystems. Timely and accurate monitoring of deforestation events is necessary to guide tropical forest management activities. Synthetic aperture radar (SAR) is less susceptible to weather conditions and plays an important role in high-frequency monitoring in cloudy regions. Currently, most SAR image-based deforestation identification uses manually supervised methods, which rely on high quality and sufficient samples. In this study, we aim to explore radar features that are sensitive to deforestation, focusing on developing a method (named 3DC) to automatically extract deforestation events using radar multidimensional features. First, we analyzed the effectiveness of radar backscatter intensity (BI), vegetation index (VI), and polarization feature (PF) in distinguishing deforestation areas from the background environment. Second, we selected the best-performing radar features to construct a multidimensional feature space model and used an unsupervised K-mean clustering method to identify deforestation areas. Finally, qualitative and quantitative methods were used to validate the performance of the proposed method. The results in Paraguay, Brazil, and Mexico showed that (1) the overall accuracy (OA) and F1 score (F1) of 3DC were 88.1–98.3% and 90.2–98.5%, respectively. (2) 3DC achieved similar accuracy to supervised methods without the need for samples. (3) 3DC matched well with Global Forest Change (GFC) maps and provided more detailed spatial information. Furthermore, we applied the 3DC to deforestation mapping in Paraguay and found that deforestation events occurred mainly in the second half of the year. To conclude, 3DC is a simple and efficient method for monitoring tropical deforestation events, which is expected to serve the restoration of forests after deforestation. This study is also valuable for the development and implementation of forest management policies in the tropics

    Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    Get PDF
    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived from this study agree well with an existing urban extent polygon data set that was previously developed independently. The overall mapping accuracy was estimated at about 92.5% with 3% commission error and 12% omission error for the impervious type from all images regardless of image quality and initial spatial resolution

    Evolutionary Analysis of Structural Protein Gene VP1 of Foot-and-Mouth Disease Virus Serotype Asia 1

    Get PDF
    Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown

    A novel spectral index for mapping blue colour-coated steel roofs (BCCSRs) in urban areas using Sentinel-2 data

    No full text
    Blue colour-coated steel roofs (BCCSRs) offer a lightweight and economical option to concrete and other cladding in buildings, but they are also controversial for altering the surface energy budget and water cycle. Obtaining spatial information about BCCSRs is crucial for exploring the environmental impacts of man-made landscapes. However, existing methods are not always effective due to the variety of BCCSR types and background conditions. To overcome these limitations, we proposed a new index (called BCCSI) based on Sentinel-2 multispectral images to map the commonly used BCCSRs. Five typical study areas were chosen worldwide to develop and validate the BCCSI. Based on spectral analysis, we constructed the BCCSI using the blue, red, green, and shortwave infrared 2 (SWIR2) bands to highlight the BCCSR while suppressing the background condition. Compared with five existing indices, the BCCSI was effective in the visual evaluation, separability analysis and BCCSR mapping. Moreover, the BCCSI achieved similar accuracy to the supervised classifier while avoiding the time-consuming and laborious effort of sample collection. Furthermore, the BCCSI showed its applicability in medium-resolution satellite data, such as Landsat-8 imagery. Thus, the proposed BCCSI provides a viable scheme for global BCCSR mapping and analysis

    Optimization of Characteristic Phenological Periods for Winter Wheat Extraction Using Remote Sensing in Plateau Valley Agricultural Areas in Hualong, China

    No full text
    It is important to develop or validate remote sensing methods to explore agricultural management and food self-sufficiency in the agricultural areas of the Qinghai–Tibet Plateau under the influence of global change, ecological protection, and socio-economic development. Studies on the use of remote sensing to monitor crop planting on the Qinghai-Tibetan Plateau are limited, with inconclusive results. Therefore, in this study, we analyzed Sentinel-2A/B images and field survey data in Hualong, China (located in Hehuang Valley, Qinghai-Tibetan Plateau) for winter wheat identification and verification at different spatial scales based on the time series of the normalized difference phenology index (NDPI) and dynamic time warping (DTW) algorithm. The characteristic phenological period and the corresponding DTW threshold were optimized using remote sensing data extracted for winter wheat. The results showed that NDPI corresponding to the jointing-heading stage, grouting-harvesting stage, and jointing-harvesting stage with DTW could identify winter wheat regardless of whether the spatial scale was a single quadrat, a combination of two quadrats, or the entire study area. The NDPI corresponding to the jointing-heading stage (corresponding DTW threshold T = 0.158) could generate a relatively rational winter wheat map; the NDPI corresponding to the time series of the grouting-harvesting stage (combined with DTW threshold T = 0.195) could detect a planting area with relatively high accuracy when supported by cultivated land, which matches the statistical reporting of the winter wheat area data. Similarly, with the support of cultivated land data, the planted area could be identified early based on the phenological characteristics of winter wheat before overwintering; however, the extraction scheme needs to be optimized further

    Comparison of upscaling cropland and non-cropland map using uncertainty weighted majority rule-based and the majority rule-based aggregation methods

    No full text
    Aggregation method is seriously impacted by the landscape characteristics, which has been emphasized due to proportional errors. This research proposed an uncertainty weighted majority rule-based aggregation method (UWMRB) to upscale the cropland/non-cropland map. The Cropland Data Layer for 2016 at 30m resolution, with its corresponding confidence level data, were collected to conduct the experiment using UWMRB and majority rule-based aggregation method. Proportional errors of crop/non-crop were used to assess the accuracy of the two methods. Ordinal logistic regression was used to obtain the probability of an error occurring to predict the uncertainty of both methods. The results show that UWMRB can achieve the lower proportional errors with lower uncertainty. Also, it can reduce the influence of complexity and fragmentation of landscape on aggregation performance. Additionally, the examination of UWMRB provides an important view of application of uncertainty information for upscaling land cover maps in an efficient way

    Optimization Performance Comparison of Three Different Group Intelligence Algorithms on a SVM for Hyperspectral Imagery Classification

    No full text
    Group intelligence algorithms have been widely used in support vector machine (SVM) parameter optimization due to their obvious characteristics of strong parallel processing ability, fast optimization, and global optimization. However, few studies have made optimization performance comparisons of different group intelligence algorithms on SVMs, especially in terms of their application to hyperspectral remote sensing classification. In this paper, we compare the optimization performance of three different group intelligence algorithms that were run on a SVM in terms of five aspects by using three hyperspectral images (one each of the Indian Pines, University of Pavia, and Salinas): the stability to parameter settings, convergence rate, feature selection ability, sample size, and classification accuracy. Particle swarm optimization (PSO), genetic algorithms (GAs), and artificial bee colony (ABC) algorithms are the three group intelligence algorithms. Our results showed the influence of these three optimization algorithms on the C-parameter optimization of the SVM was less than their influence on the σ-parameter. The convergence rate, the number of selected features, and the accuracy of the three group intelligence algorithms were statistically significant different at the p = 0.01 level. The GA algorithm could compress more than 70% of the original data and it was the least affected by sample size. GA-SVM had the highest average overall accuracy (91.77%), followed by ABC-SVM (88.73%), and PSO-SVM (86.65%). Especially, in complex scenes (e.g., the Indian Pines image), GA-SVM showed the highest classification accuracy (87.34%, which was 8.23% higher than ABC-SVM and 16.42% higher than PSO-SVM) and the best stability (the standard deviation of its classification accuracy was 0.82%, which was 5.54% lower than ABC-SVM, and 21.63% lower than PSO-SVM). Therefore, when compared with the ABC and PSO algorithms, the GA had more advantages in terms of feature band selection, small sample size classification, and classification accuracy

    The impact of positional errors on soft classification accuracy assessment: A simulation analysis

    No full text
    Validating or accessing the accuracy of soft classification maps has rapidly developed over the past few years. This assessment employs a soft error matrix as generalized from the traditional, hard classification error matrix. However, the impact of positional error on the soft classification is uncertain and whether the well-accepted half-pixel registration accuracy is suitable for the soft classification accuracy assessment is unknown. In this paper, a simulation analysis was conducted to examine the influence of positional error on the overall accuracy (OA) and kappa in soft classification accuracy assessment under different landscape conditions (i.e., spatial characteristics and spatial resolutions). Results showed that with positional error ranging from 0 to 3 soft pixels, the OA-error varied from 0 to 44.6 percent while the kappa-error varied from 0 to 93.7 percent. Landscape conditions with smaller mean patch size (MPS) and greater fragmentation produced greater positional error impact on the accuracy measures at spatial resolutions of 1 and 2 unit distances. However, this trend did not hold for spatial resolutions of 5 and 10 unit distances. A half of a pixel was not sufficient to keep the overall accuracy error and kappa error under 10 percent. The results indicate that for soft classification accuracy assessment the requirement for registration accuracy is higher and depends greatly on the landscape characteristics. There is a great need to consider positional error for validating soft classification maps of different spatial resolutions
    • …
    corecore